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A simple method of estimation of the polydispersity index of narrow molecular weight distribu-
tions using quasielastic light scattering data has been suggested. The method approximates the
relaxation times distribution by using the Pearson V distribution and iterates its parameters by
the least squares method to an experimental correlation function. For the usual unimodal
molecular weight distributions the polydispersity index estimate is good (with an error up to O1)
at a determined value up to 12, rough at a determined value up to 1'5, while above this value
the method is virtually impracticable. If the type of the molecular weight distribution is known
(Schulz-Zimm, lognormal, Pearson V), the polydispersity value thus determined can be cor-
rected, which would extend the applicability limits of the method. It is shown that for an adequate
determination of the polydispersity index the noise level ought to be about 1O.

Determination of the polydispersity index MW/Mfl using quasielastic light scattering
(QELS) data was dealt with by Han and McCrackin'. They assume either the
Schulz-Zimm (SZ) or lognormal (LN) molecular weight distribution W(M) and
proportionality of the relaxation time, t, to the square root of molecular weight,
M; hence, by employing numerical integration, they calculate the autocorrelation
function g1(t). After that, they try to find such parameters of molecular weight dis-
tribution (MWD) which would provide the best fit of the calculated function g1(t)
with experiment. A disadvantage of such procedure is that it requires numerical inte-
gration over molecular weight distribution. A simpler method has been suggested
by tèpánek, Tuzar and Koñák2. They measured the relaxation function at several
sampling times and, by using the least squares method, found for each sampling
time an apparent relaxation time, assuming the sample to be monodisperse. They
determined the polydispersity index by means of nomograms from the dependence
of the apparent relaxation time on the sampling time by assuming that MWD is
SZ or LN and that = cMa, a being 1/2, 1/3, or 0577. A disadvantage of such
procedure consists in that it requires measurement at several sampling times and
nomographic reading off of the results. References to other papers devoted to the
study of polydispersity by QELS can be found in the papers cited above1 ,2
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In this study we report a very simple method of estimation of the polydispersity
index of narrow MWD from QELS data which requires neither numerical integration
nor nomographic reading off of the results, nor measurements at several sampling
times. Due to its simplicity, the required calculation can be made very quickly using
a calculator or a small computer.

THEORETICAL

In the case of narrow distributions the low resolution power of the QELS method
(half a deôade at best) does not allow us to determine the shape of the distribution
(e.g., asymmetry), but only its width. Thus, the actual shape of the distribution is
of little importance. For data treatment we choose the distribution Pearson V (PV),
which allows the simplest mathematical procedure to be employed. The PV distribu-
tion is given by the relation

w(r) = p—i exp (— to/-r)/JT(p) (1)

with adjustable parameters to, which determines the position of the distribution
on the log axis, and p, which determines the width of the distribution. The Laplace
transform of the PVdistribution is given by

g1(t) = j w(t) exp (—t/'r) d-r = (1 + tfr0), (2)

where t is the time delay. The extremely simple analytical form of the Laplace trans-
form makes possible an easy iteration of the parameters and p and of the position
of the base line b from experimental data g(t) + b obtained from the homodyne
QELS experiment.

To determine the polydispersity index by using the parameter p mentioned above
the usual assumptions are used, i.e., that macromolecules having molecular weight M
scatter light whose intensity is proportional to the square of molecular weight and
to their number, i.e. to MW(M), where W(M) is the weight molecular weight distribu-
tion with the relaxation time

(3)

where a, c are empirical parameters, a lying in the interval between 1/3 and 3/5.
Hence, and also using the condition that the expressions w(t)di and MW(M) dM
must be proportional at r = cMa, we obtain a relation between w(-r) and W(M):

w('r) JV((i/c)hIa) (T/c)21*_h/(ac) (4a)

w(cMa) acM2 w(M). (4b)
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For the PVdistribution of relaxation times (1) we obtain for the polydispersity index

M/M = r(p) f(p + 2/a)/f2(p + 1/a). (5)

In particular, for the Gaussian statistical coil (polymer in the 0 solvent) with a = 1/2

MW/Mn = (p + 3) (p + 2)/((p + 1) p) (5a)

and for rigid spheres with a = 1/3

MW/MS = (p + 5) (p + 4) (p + 3)/((p + 2) (p + 1) p). (5b)

The method was tjsed to estimate the polydispersity index of poly(methyl methacry-
late) particles in ref.3.

When using relation (5) to estimate the polydispersity index a question arises
in which range of polydispersity and with what accuracy the relation can be em-
ployed, if the relaxation times distribution has a form different from PV. By using
quite a long series of samples of macromolecules, it was shown in ref.4 that the uni-
modal molecular weight distribution can be comparatively well approximated by
a generalized exponential (GEX) distribution5,

W(M) = Is! M" 1M' exp (—(M/Mo)s)/T(u/S), (6)

where parameters u and s are either both positive or both negative. In the limiting
case s — 0 the GEX distribution becomes4 a LN distribution

W(M) = j( 112p_ 'M' exp (—1n2(M/Mo)/fl2) (7)

i.e. a distribution symmetrical in the M x W(M) vs log M plot. In the case of
positive s the GEX distribution is asymmetrical with a wing at low M, in the case
of negative s the wing is at high M. The parameter M0 determines the position of
distribution on the axis log M while the parameter u (fi in the LN limit) determines
the width of the distribution. The simultaneous change in the parameters u and s
in the same ratio changes only the horizontal scale on the log M axis. For samples
investigated in ref.4 the parameter s was in the range between —1 and 1. For GEX
MWD (Eq. (6)) we obtain from Eq. (4a) for the distribution function of relaxation
times

w(-r) '' JsJ (r/c)(tI_ 1)/a ii,4u exp (_((r/c)I/Mo)s) (/)2Ia_ 1/(ac) (8)

and after normalization

w('r) f'I z"1-r' exp (—(T/t0)')/r(u'/s'), (9)
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FIG.l
Residuals of correlation functions (y calculated, y simulated) in the iteration of parameters of
the Pearson V relaxation time distribution for s' 2, polydispersity index 2 (at a = 1/2), free
iteration of the base and for a distribution r x w() maximum at t = 100,b distribution X w(r)
maximum at = I 000 5
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TABLE I

Simulated (Ps) and calculated (Fe) polydispersity index values and the sum of squares of devia
tion for various GEX MWD and various a values

a= 05

s 15 s= 1(SZ) s=05

1, 1' SSQ P P SSQ P P SSQ

.1042 1039 00364 11 1089 0529 11 1092 0272
1079 1070 0364 12 1159 528 12 1.171 3.09
1113 1094 120 13 1215 173 13 1239 114
1143 1114 258 14 1261 367 14 1298 268
l170 1131 440 F5 1299 620 15 1350 495
l194 1145 657 16 1332 916 l6 1396 792
l217 1l57 &96 17 1359 124 17 F437 115

1237 l167 115 18 1383 158 18 1474 156
1256 1176 141 19 1403 192 19 1507 201
1274 1184 167 20 1421 226 20 1537 249
1.274c 1191 178 2.0a 1450 265 2.Oa 1569 256
1274" 119l l86 2,0b 1449 276 20b 1568 271
1344 l•212 292 25 1486 385 25 1653 513
l.344a 1222 321 2.5a 1525 470 25" 1702 551
1394 1230 398 30 1527 515 30 1734 782
1.394a 1241 444 3.Øa 1572 646 3.Øa 1795 862
1461 1251 554 40 1574 702 40 1838 1 260
1461° 1264 632 4.Oa 1627 907 4.ØC 1918 1 440
1'504 l263 660 50 1600 827 50 1903 1 640
1.504a 1277 76l 5•J 1659 1 090 5.Oa 1997 1 920

where u' = (u + 1)/a, s' = s/a, and = cMi, i.e. again the GEX distribution. In
the LN limiting case (Eq. (7)) we obtain

w(r) ' ir 112fl '(r/c) '' exp (—in2 ((r/c)1/M0)/fl2) (r/c)2 1/(ac) (10)

and

w(#r) 112fl11 exp (—in2 (-r/r )/p2) , (11)

where fi' = a/I and = cM exp (a/32/2), i.e. the LN distribution once again.
Special cases of the GEX distribution are the SZ distribution (s = 1) and the PV
distribution (Eq. (1), s = —1, u = — p).
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TABLE 1

tions multiplied by 108 (SSQ) in the iteration of parameters of the P V relaxation time distribu-

a= 05

s=—l(PV) s=—l5

SSQ P5 P SSQ P SSQ

1l l096 00785
12 1185 102
13 1267 426
14 1344 112
15 1416 230
16 1483 40•4

17 1546 64l

18 1606 94l
19 1663 131

20 1717 174

2.Oa 1747 138

20" 1746 153

25 1951 480

25 2006 377
30 2142 911

3.ØU 2222 709

40 2440 2010
4.Øa 2571 1 560

5.0 2668 3290
5.Oa 2848 2 530

For the polydispersity index we obtain from Eqs (8) and (9) in ref.4 (in which
we substitute u — 1 for u for a different definition of this parameter)

MW/Mn = JT((u + 1)/s) i'((u — 1)/s)/1T2(u/s) (12)

and in the LN limiting case from Eqs (11) and (12) in the same paper we have

MW/Mn = exp (p2/2) (13)

At last, by substituting s = s'a, u = u'a — 1, and fI = f1'/a we obtain relations
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s= 0(LN)

ll 1104
12 1217
13 1338
14 1467
15 F605

16 1751
17 1904
18 2065
19 2232
20 2406
2.Oa 2298
20' 2310
25 3356
25" 3084
3O 4400
3.Øa 3'906

4.0 6631
4.Oa 5585
5.0 &941

7253

0104 l045 l046 00171
176 1090 1097 0304
9'24 F135 1151 169

299 1181 1210 578
73•5 1227 1272 151
151 l274 1339 33l
275 1320 1410 642

456 1367 1485 113

701 1414 1564 187

1 020 1461 1647 289

280 1.461a 1604 108

512 1461b l607 149

3720 1698 2l17 1 430

700 1698" 1998 364

7 920 1937 2664 3 930

1140 1937' 2424 727

17600 24l8 3912 12800

1 840 2418' 3326 1 480

25000 2902 5272 24500
2240 2.902a 4243 2050
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TABLE!

(Continued) .

a= 1/3

s = I (SZ) s = 2/3 s = 1/3

P SSQ P SSQ F5 F SSQ

11 1089 00364 1253 1206 O529 1246 1214 0272
1'2 1161 0364 1577 1377 528 1538 F408 309
13 12l9 120 2C01 1520 173 1886 1582 114
14 1267 258 2577 1640 367 2'300 1738 268
15 1308 440 3395 1741 620 2793 F879 495,
16 1343 6•57 4638 1828 916 3382 2006 792
17 1372 896 6729 1904 124 4O&8 2121 115

18 1398 115 10942 1969 158 4937 2226 156

19 1•421 14•1 23644 2027 192 5965 2322 201
20 1441 167 cc 2O77 226 7215 2410 249
20'2 1458 178 cc'2 2159 265 7215'2 25O5 256
20b 1458 186 cct' 2156 276 72l5" 2501 271
25 1513 29'2 cc 2263 385 20000 2759 513
25° 1538 321 cc'2 2375 470 20000'2 2907 551
3.0 1559 398 cc 2380 515 82964 3007 782
30'2 l588 444 cc!' 2513 646 82964'2 3199 862
4.0 1613 554 cc 2519 702 cc 3336 1 260
4.Oa I648 63'2 cc" 2680 907 cc" 3596 1440
50 1644 66'O cc 2599 827 cc 3•547 1 640
5.()'2 1683 761 cc'2 2776 1 090 cc" 3856 1 920

= J.T((u' — 2/a)/s') r'(u'/s')/r'2((u' — 1/a)/s') (14)

MW/Mn = exp (JJ'2/(2a2)). (15)

By substituting u' = —p, s' = —1 we obtain equation (5).

RESULTS

To find out what error we would commit in the polydispersity index by approximating
the distribution w(r) with function (1), we simulated the correlation functions g(t)
for the GEX distributions w(i) with the parameter s' = —3, —2, 0, 1, 2, 3 by means
of the parameter u' chosen so as to make the polydispersity index 11, F2, ..., 2, 25,
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TABLE I

(Continued) ,

a— 1/3

s 0 (LN) s = 2/3 s —1 (P V)

P SSQ P P SSQ

0104

P

11

P

1106

SSQ

001,71l239 l224 00785 1228. l243
1507 1443 F02 1459 1524 176 12 1225 O34
1805 1656 426 1695 1846 924 13 1358 196
2132 1862 112 1933 2208 299 l4 l506 578
2490 2061 230 2173 2613 735 15 1669 151
2879 2253 404 2415 3060 151 16 1849 331
3300 2438 641 2658 3550 275 17 2046 642
3753 2617 941 2903 4081 456 18 2260 113

4238 2789 131 3149 4653 701 l9 2491 187

4757 2955 174 3395 5264 1 020 20 2741 289

4.757a 3048 138 3395" 4882 280 2.Oa 2611 108

4757b 3'044 153 3395b 4923 512 20b 2620 149

7'859 3704 480 4638 8839 3 720 25 4259 1 430,

7859 3'884 377 4638 7780 700 2.5a 3857 364
l1845 4342 911 5890 13'090 7920 30 6199 3930
11.845a 4618 709 s•890 11046 1140 3.0a 5328 727

22627 5•384 2010 &411 22811 17600 4'O 1l072 12800
22.627c 5859 1 560 8.411a 18172 1 840 40" &719 1 480

37384 6214 3 290 10942 33379 25 000 50 16812 24 500

37.384a 6•883 2530 10.942a 25621 2240 5.0a 12437 2050

3,4,5 for a = 1/2 (for a = 1/3 in the case that s = —3 and 3) and by means of the
parameter t chosen so as to make thç maximum of the function 'rw(-r)lie at = 100
(arbitrary time units, e.g., microseconds), and for the polydispersity index 2 and more
also to have the maximum at = 1 000. The correlation functions were simulated
at the points t = 3,4,5,...,15,16,26,36,...,406,416,516,616,...,4316,4416
without noise. To these simulated correlation functions, p4rarneters of the PVdistribu-
tion with a freely iterated base were iterated (for a polydispersity index up to 2, also
with a base subjected to the same experimental error as the other experimental
points), and using the iterated parameter p the polydispersity index was calculated
by means of Eq. (5).

The polydispersity index values thus obtained have been compared with those
simulated in Table I together with the sum of squares of deviations in the iteration.
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TABLE I

(Continued)

a = 06

s=18 s=12 s=06

SSQ P SSQ P P SSQ

1029 1027 00364 1067 1061 0'529 1068 1'064 0•272

1053 1048 0364 1131 1109 528 1133 1117 309
1075 1065 120 F190 F147 l73 1195 1164 114

1093 1079 258 1•246 1'178 367 1255 1203 26'8

FilO 1090 4'40 1299 F204 620 1312 F238 495
1125 1•100 6'57 1349 1226 916 1368 1269 792
1138 1108 896 1396 1244 124 1421 1296 115

1150 1115 115 1441 1260 158 1473 1320 156

1161 1121 141 1484 1274 192 1523 1342 201

1171 1126 167 1525 1286 226 1572 1362 249

1171" 1131 178 1.525a 1305 265 157r 1383 256

F171b 1131 186 1525" 1304 276 1572" 1382 271

1209 1146 292 1700 1329 385 1794 1438 513

1.209a 1152 321 1.700a 1354 470 1.794a 1469 551

1235 1158 39•8 1841 1355 515 1988 1490 782

1.235a 1165 444 1841" 1385 646 1.988a 1530 862

F268 1172 554 2053 1386 702 2315 1558 1 260

1.268a 1180 632 2.053a F421 907 2.315a F610 1 440

1289 1180 660 2204 1403 827 2583 F600 1 640

1.289a 1189 761 2.204a 1442 1 090 2.583a 1660 1 920

a Maximum of the r X w(r) distribution simulated at 1 000 instead of the standard value 100.
b As the note and further with the base iterated with the same experimental error as the other

The results of iteration with the experimental base differed only very little from
those obtained with the freely iterated base, and are therefore given only for the
polydispersity index 2 and the maximum of the function rw(t) at i = 1 000. The
course of the residuals in the iteration at a fixed maximum of the function rw(r)
and at a polydispersity index up to 2 is very similar, the main difference being the
scale and the sign according to the sign at s' + 1. This course can be seen in Fig. 1
for SF = 2, polydispersity index 2 (at a = 1/2) and free iteration of the base.

DISCUSSION

Values in Table I show that the method underestimates the polydispersity index
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TABLE I

(Continued)

a— 06

s= 0(LN) s= —12 s= —18

P SSQ 1' P SSQ P5 P SSQ

1•068 1•066 0•0785 1070 1072 0104 1'031 1032 0'0171

1135 1•127 102 l139 1149 176 1063 1'067 0304
1200 1182 426 1209 1230 9'24 I'095 1104 1'69

1263 1•234 112 1279 1316 299 1128 1144 578
1325 1282 230 1349 1407 735 1161 1186 15'l

1386 1326 404 1'419 1501 151 1194 1231 331
1446 1368 64l 1489 1600 275 1228 1278 64'2

1504 1407 941 156O l•703 456 1262 1328 113

1562 1444 131 1630 1809 701 1296 F380 187

1618 l•479 174 1700 1919 1 020 l33O 1434 289

1.618a 1499 138 1.700a 1851 280 1.330a 1406 108

1618" 1498 153 1•700b F858 512 1.330b 1408 149

189O 1631 480 2053 2507 3 720 1505 1737 1 430

1.890a 1665 377 2.053a 2340 700 1.505a 1660 364

2145 1'752 911 2406 3138 7920 1683 2080 3930
2.145a 1'803 709 2.406a 2'841 1140 1930 727

2619 1'940 2010 3113 4463 17600 2043 2845 12800
2.619a 2022 1 560 3.113a 3845 1 840 2.043z 2488 1 480
3058 2083 3290 3820 5813 25000 2406 3660 24500
3.058C 2194 2530 3.820a 4828 2240 2406 3045 2050

experimental points instead of the standard free iteration of the base.

values for s> —a (i.e. for SZ and LN MWD) while overestimating those for
s < —a (PVMWD). For a polydispersity index up to F2 the method gives a good
estimate with an error below O1; at a fixed s value the error is only little dependent
on a. For the polydispersity indices above this value up to F5 the method still gives
a very rough estimate of the polydispersity index (e.g. the real polydispersity index 2
in the case of SZ MWD is distorted to c. 1.45), while above this value the method is
virtually not applicable at all without some additional steps. If, however, we know
the MWD type (SZ, LN, PV, or s in the case of GEX), or if we assume some MWD
type, then by using Table I we can correct the calculated polydispersity index values,
thus extending applicability of the method.
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If the sum of the squares of the residuals (shown multiplied by 108 as SSQ in
Table I) is lower than the square of the noise level (1. e. than the average square of the
experimental error) in the correlation function g(t), then by using this correlation
function it is not possible to distinguish the simulated (real) distribution from the
assumed one. At the usual noise level about io- this means that at the polydis-
persity index up to c. 2 QELS cannot be used to determine the MWD type. The
worst situation arises at a = 1/3 because in this case the rela.,tation times distribu-
tion at the same MWD is narrowest. From SSQ values in Table I we can see that
in order to determine the polydisporsity index from the QELS experiment with sersible
accuracy, we would have to reach a noise level in the correlation function of about
i04, which can be achieved only by a very long measurement using the best correla-
tors.
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