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A simple method of estimation of the polydispersity index of narrow molecular weight distribu-
tions using quasielastic light scattering data has been suggested. The method approximates the
relaxation times distribution by using the Pearson V distribution and iterates its parameters by
the least squares method to an experimental correlation function. For the usual unimodal
molecular weight distributions the polydispersity index estimate is good (with an error up to 0-1)
at a determined value up to 1-2, rough at a determined value up to 1-5, while above this value
the method is virtually impracticable. If the type of the molecular weight distribution is known
(Schulz-Zimm, lognormal, Pearson V), the polydispersity value thus determined can be cor-
rected, which would extend the applicability limits of the method. It is shown that for an adequate
determination of the polydispersity index the noise level ought to be about 104,

Determination of the polydispersity index M, /M, using quasielastic light scattering
(QELS) data was dealt with by Han and McCrackin!. They assume either the
Schulz-Zimm (SZ) or lognormal (LN) molecular weight distribution W(M) and
proportionality of the relaxation time, 7, to the square root of molecular weight,
M; hence, by employing numerical integration, they calculate the autocorrelation
function g,(t). After that, they try to find such parameters of molecular weight dis-
tribution (MWD) which would provide the best fit of the calculated function g,(t)
with experiment. A disadvantage of such procedure is that it requires numerical inte-
gration over molecular weight distribution. A simpler method has been suggested
by Stépanek, Tuzar and Kofak?. They measured the relaxation function at several
sampling times and, by using the least squares method, found for each sampling
time an apparent relaxation time, assuming the sample to be monodisperse. They
determined the polydispersity index by means of nomograms from the dependence
of the apparent relaxation time on the sampling time by assuming that MWD is
SZ or LN and that t = ¢cM?, a being 1/2, 1/3, or 0-577. A disadvantage of such
procedure consists in that it requires measurement at several sampling times and
nomographic reading off of the results. References to other papers devoted to the
study of polydispersity by QELS can be found in the papers cited above!'2.
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In this study we report a very simple method of estimation of the polydispersity
index of narrow MWD from QELS data which requires neither numerical integration
nor nomographic reading off of the results, nor measurements at several sampling
times. Due to its simplicity, the required calculation can be made very quickly using
a calculator or a small computer.

THEORETICAL

In the case of narrow distributions the low resolution power of the QELS method
(half a decade at best) does not allow us to determine the shape of the distribution
(e.g., asymmetry), but only its width. Thus, the actual shape of the distribution is
of little importance. For data treatment we choose the distribution Pearson V (PV),
which allows the simplest mathematical procedure to be employed. The PV distribu-
tion is given by the relation

w(z) = TP~ exp (=1o/2)/T(p) )

with adjustable parameters 7,, which determines the position of the distribution
on the log 7 axis, and p, which determines the width of the distribution. The Laplace
transform of the PV distribution is given by

g:(t) = [§ w(r)exp (—tft)dt = (1 + t[t,)" P, ()

where t is the time delay. The extremely simple analytical form of the Laplace trans-
form makes possible an easy iteration of the parameters t, and p and of the position
of the base line b from experimental data gf(t) + b obtained from the homodyne
QELS experiment.

To determine the polydispersity index by using the parameter p mentioned above
the usual assumptions are used, i.e., that macromolecules having molecular weight M
scatter light whose intensity is proportional to the square of molecular weight and
to their number, i.e. to MW(M), where W(M) is the weight molecular weight distribu-
tion with the relaxation time

T = cM*, 3)

where a, ¢ are empirical parameters, a lying in the interval between 1/3 and 3/5.
Hence, and also using the condition that the expressions w(t) dt and MW(M) dM
must be proportional at t = cM?®, we obtain a relation between w(r) and W(M):

w(z) ~ W((z[e)'") (x]e)**~"[(ac) (4a)
w(cM®) acM*~2% ~ W(M) . (4b)
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For the PV distribution of relaxation times (1) we obtain for the polydispersity index
M, /M, = T(p)T(p + 2/a)/T*(p + 1/a). )
In particular, for the Gaussian statistical coil (polymer in the © solvent) with a = 1/2

MM, = (p + 3)(p + 2)/((p + 1) P) (5a)

and for rigid spheres with a = 1/3

MM, = (p +5) (0 +4)(p + 3(p +2)( + 1) p). (5b)

The method was used to estimate the polydispersity index of poly(methyl methacry-
late) particles in ref.>.

When using relation (5) to estimate the polydispersity index a question arises
in which range of polydispersity and with what accuracy the relation can be em-
ployed, if the relaxation times distribution has a form different from PV. By using
quite a long series of samples of macromolecules, it was shown in ref.4 that the uni-
modal molecular weight distribution can be comparatively well approximated by
a generalized exponential (GEX) distribution®,

W(M) = |s| M*~"Mg" exp (—(M|M,)")[T(ufs), (6)

where parameters u and s are either both positive or both negative. In the limiting
case s — 0 the GEX distribution becomes* a LN distribution

W(M) = n~ 27 M ™" exp (—In*(M[M,)/B?) (7)

i.e. a distribution symmetrical in the M x W(M)vslog M plot. In the case of
positive s the GEX distribution is asymmetrical with a wing at low M, in the case
of negative s the wing is at high M. The parameter M, determines the position of
distribution on the axis log M while the parameter u (8 in the LN limit) determines
the width of the distribution. The simultaneous change in the parameters u and s
in the same ratio changes only the horizontal scale on the log M axis. For samples
investigated in ref.* the parameter s was in the range between —1 and 1. For GEX
MWD (Eq. (6)) we obtain from Eq. (4a) for the distribution function of relaxation

times
w(t) ~ [s] (z/e)“ """ Mg exp (= ((z/c)""*[Mo)") (z[e)**~/(ac) ®
and after normalization
w(t) =[5 oo™ exp (= (gf10)")T(w']s') )
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maximum at r = 1 000

Residuals of correlation functions (y, calculated, y, simulated) in the iteration of parameters of

the Pearson V relaxation time distribution for s 2, polydispersity index 2 (at a = 1/2), free
iteration of the base and for a distribution * X w(r) maximum at 7 = 100, b dlstnbuuon T X w(?)

Collect. Czech. Chem. Commun. (Vol: 56) (1991)




1646 , Jakes:

TABLE I

Simulated (P,) and calculated (P.) polydispersity index values and the sum of squares of devia-
tion for various GEX MWD and various a values

a= 05
s=15 s=1(S2) s=05
P, P, SSQ P, P, SSQ P, P, SSQ
.1-042 1-039  0-0364 1-1 1-089 0-529 111 1-092 0-272
1-079 1-070  0-364 12 1-159 5-28 1-2 1-171 309
1-113 1-094 1-20 1-3 1-215 17-3 13 1239 11-4
1-143 1114  2-58 14 1-261 367 1-4 1-298 268
1-170 1-1131  4-40 15 1299 62-0 15 1-350 49-5
1-194 1-145 657 1-6 1-332 916 16 1396 79-2
1-217 1-1157 896 17 1-359 124 17 1-437 115
1-237 1-167  11-5 1-8 1-383 158 1-8 1-474 156
1256 11176  14-1 1-9 1-403 192 19 1-507 201
1-274 1184 167 2:0 1-421 226 2:0 1-537 249
1-274° 1191 178 2-0° 1-450 265 2:0° 1569 256
1274 1-191 186 2.0 1-449 276 2-0b 1-568 271
1-344 1212 292 25 1-486 385 2:5 1-653 513
1-344° 1222 32:1 259 1-525 470 2:5¢ 1-702 551
1394 1230 398 30 1-527 515 3-0 1-734 782
1-394° 1241  44-4 3.0° 1-572 646 3-0° 1-795 862
1-461 1251 554 40 1-574 702 40 1-838 1260
1-461° 1264  63-2 4-0° 1-627 907 4-0° 1-918 1 440
1-504 11263 660 50 1-600 827 50 1-903 1 640
1-504° 1277 761 5:0° 1-659 1 090 5-0° 1-997 1920

where u’ = (u + 1)/a, s' = s/a, and 1, = cMj, i.e. again the GEX distribution. In
the LN limiting case (Eq. (7)) we obtain

w(z) ~ n= 2B (xfe) ™" exp (—In* ((¢/c)"*[M,)/B?) (x]e)**~*[(ac)  (10)

and

w(t) = =128 " 117 exp (—1In? (1/7,)/B'?) , (11)
where p' = aB and t, = cMj exp (ap?/2), i.e. the LN distribution once again.
Special cases of the GEX distribution are the SZ distribution (s = 1) and the PV
distribution (Eq. (1), s = —1, u = —p).
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TABLE 1
tions multiplied by 108 (SSQ) in the iteration of parameters of the PV relaxation time distribu-

a= 05
s=0(LN) s= —1(PV) s=—15

P, P, SSQ P, P, SSQ P, P, SSQ
11 1-096 0-0785 11 1-104 0-104 1-045 1-046 00171
12 1-185 1-02 12 1217 1-76 1-090 1-097 0-304
13 1267 426 13 1-338 9-24 1-135 1151 1-69
1-4 1-344 112 14 1-467 29-9 1-181 1-210 5-78
15 1-416 230 1-5 1-605 73-5 1-227 1272 15-1
16 1-483 40-4 16 1751 151 1-274 1-339 331
17 1-546 64-1 117 1-904 275 1320 1410 64-2
1-8 1-606 94-1 1-8 2:065 456 1367 1-485 113
19 1-663 131 19 2232 701 1-414 1-564 187
2:0 17117 174 2:0 2-406 1 020 1-461 1-647 289
2:0° 1-747 138 2-0° 2298 280 1-461°  1-604 108
2-0" 1-746 153 2.0 2:310 512 1-461° . 1-607 149
2:5 1-951 480 2:5 3356 -~ 3720 1698 2117 1430
2:5° 2:006 377 2:59 3-084 700 1-698°  1-998 364
3-0 2:142 911 30 4-400 7920 1937  2-664 3930
3-0° 2:222 709 3.0° 3-906 1140 1-937% 2424 727
40 2-440 2010 40 6631 17600  2-418 3-912 12 800
4-0° 2:571 1 560 4-0° 5-585 1 840 2:418°  3-326 1 480
5-0 2-668 3290 5-0 8-941 25000 2902 5272 24 500
5-0° 2-848 2530 5-0° 7-253 2240  2:902°  4-243 2050

For the polydispersity index we obtain from Eqs (8) and (9) in ref.* (in which
we substitute u — 1 for u for a different definition of this parameter)

M, M, = T((u + 1)[s) [((u — 1)/s)/T*(u/s) (12)
and in the LN limiting case from Eqs (11) and (12) in the same paper we have
M,/M, = exp (B*2). (13)

At last, by substituting s = s'a, u = u'a — 1, and g = B'/a we obtain relations
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TABLE I N
(Continued) .
a=1/3
s = 1(S2) s=2/3 s=1/3
P, P,  SSQ P, P, SSQ P, P, SSQ
1-1 1-089  0-0364 1-253 1-:206 0-529 1-246 1-214 0-272
12 1161 = 0-364 1-577 1-377 5-28 1-538 1-408 3-09
13 1-219 1-20 2-001 1-520 17-3 1-886 1-582 11-4
1-4 1-267 2:58 2:577 1-640 36-7 2:300 1-738 26-8
1-5 1-308 4-40 3-395 1-741 62-0 2:793 1-879 495, .
1-6 1-343 657 4-638 1-828 91-6 3-382 2:006 79-2
1-7 1-372 896 6:729 1-904 124 4-088 2-121 115
1-8 1-398 11-5 -10-942 1-969 158 4:937 2:226 156
1-9 1-421 14-1 23-644 2:027 192 5-965 2:322 201
2:0 1-441 16:7 0 2:077 226 7:215 2:410 249
2:0° 1-458 17-8 oc? 2:159 265 7-215°% 2:505 256 -
2.0 1-458 18:6 och 2:156 276 7:215° 2:501 271
2:5 1-513 29-2 x*L 2:263 385 20-000 2:759 513
2:5% 1-538 321 x4 2-375 470 20-000° 2:907 551
3-0 1-559 39-8 on 2:380 515 82:964 3-007 782
3-0¢ 1-588 44-4 o ?® 2:513 646 82:964° 3-199 862"
4-0 1-613 55-4 [oe] 2:519 702 oC 3-336 1260
4:0° 1-648 63-2 o ? 2:680 907 o ® 3-596 1 440"
50 1-644 660 o 2:599 827 o 3-547 1640 -
5-0° 1-683 76-1 oc? 2:776 1090 oc? 3-856 1920
M, /M, = T((w' = 2/a)[s") T(w'[s")[T*((u" — 1/a)[s’), (14)
MM, = exp (B'*/(2a%)). (15)
By substituting u’ = —p, s’ = —1 we obtain equation (5).
RESULTS

To find out what error we would commit in the polydispersity index by approximating
the distribution w(r) with function (1), we simulated the correlation functions g3(f)
for the GEX distributions w(t) with the parameter s’ = —3, —2, 0, 1, 2, 3 by means
of the parameter u’ chosen so as to make the polydispersity index 11, 1-2, ..., 2, 2:5,
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TABLE 1
(Continued)
a=1/3
s=0(LN) s=—2/3 s=—1(PV)

P, P, SSQ P, P, SSQ P, P - SSQ
1239 1-224 0-0785 1-228 . 1-243 0-104 1-1 1-106 0-0171
1-507  1-443 1-02 1459 1524 . 176 12 1225 0-304
1-805  1-656 4-26 1-695  1-846 9-24 13 1-358 1-96
2:132  1-862 11-2 1-933 . 2-208 299 . 14 1-506 5-78.
2:490  2:061 © 230 2-173  .2-613 735 1-5 1-669 15-1
2:879 2253 40-4 2:415 3060 = 151 16 . 1-849 331
3300 2-438 64-1 2:658  3-550 275 17 2-046 64-2
3753 2617 94-1 2:903 4081 456 1-8 2:260 113
4-238  2-789 131 3-149 - 4-653 701 1-9 2491 187
4757 2955 174 . 3-395  5-264 1 020 2:0 2741 - 289
4-757°  3-048 138 3-395% - 4-882 280 - 2:0° 2-611 108
4-757°  3.044 153 3-395%  4.923 512 - 2-0° 2:620 149
7859  3-704 480 4-638 8839 3720 25 4-259 1430
7-859%  3-884 377 4-638% .7-780 . 700 2:5° 3-857 364
11-845  4-342 911 5-890 13-090 7920 - 30 6-199 3930
11-845° 4618 709 5-890° 11-046 1140 3-0° 5-328 727
22:627° 5-384 2010 - 8411 . 22-811 17600 40 - 11072 12 800
22:627°  5-859 1 560 8411° 18172 1840  40° 8719 1480
37-384 6214 - 3290 10-942 - 33-379 25 000 50 .. 16-812 24 500
37-384° 6883 2530 10-942° 25-621 2240 50°  12-437 2050

3,4,5 for a = 1/2 (for a = 1/3 in the case that s = —3 and 3) and by means of the
parameter 7, chosen so as to make the maximum of the function tw(r) lie at t = 100
(arbitrary time units, e.g., microseconds), and for the polydispersity index 2 and more
also to have the maximum at t = 1 000. The correlation functions were simulated
at the points t = 3,4,5,...,15, 16, 26, 36, ..., 406, 416, 516, 616, ..., 4 316, 4 416
without noise. To these simulated correlation functions, parameters of the PV distribu-
tion with a freely iterated base were iterated (for a polydispersity index up to 2, also
with a base subjected to the same experimental error as the other experimental
points), and using the iterated parameter p the polydispersity index was calculated
by means of Eq. (5).

The polydispersity index values thus obtained have been compared with those
simulated in Table I together with the sum of squares of deviations in the iteration.
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TABLE I
(Continued)
a= 06
s= 18 . s= 12 s= 06
P, P, SSQ P, P, SSQ P, P, SSQ
1-029 1-027 00364 1-067 1-061 0-529 1-068 1-064 0-272
1-053 1-048  0-364  1-131 1-109 5-28 1-133 1-117 3-09
1-075 1065  1-20 1-190 1-147 17-3 1-195 1-164 11-4
1-093 1079  2-58 1-246 1-178 367 1-255 1-203 268
1-110 1:090  4-40 1-299 1-204 62-0 1-312 1-238 49-5
1-125 11100 657 - 1349 1-226 91-6 1-368 1-269 79-2
1-138 1108 896 1-396 1-244 124 1-421 1-296 115
1-150 11115 11-5 1-441 1-260 158 1-473 1-320 156
1-161 11121 141 1-484 1-274 192 1-523 1-342 201
1171 11126 167 1-525 1-286 226 1-572 1-362 249
11171 11131 178 1-525°  1-305 265 1572  1-383 256
1-171* 11131 186 1-525°  1-304 276 1-572°  1-382 271
1209 1146  29-2 1-700 1-329 385 1-794 1-438 513
1:209° 1152 32-1 1-700° 1354 470 1:794° 1469 551
1-235 1-158 398 1-841 1-355 515 1-988 1-490 782
1-235° 1165 44-4 1-841  1-385 646 1-988°  1-530 862
1-268 11172 554 2:053 1386 702 2-315 1-558 1260
1-268° 1180 632 2:053° 1421 907 2-315° 1610 1 440
1-289 11180~ 660 2:204 1-403 827 2-583 1-600 1 640
1289 1189  76-1 2:204° - 1442 1 090 2:583° 1660 1920

4 Maximum of the r X w(r) distribution simulated at 1 000 instead of the standard value 100.
b As the note ® and further with the base iterated with the same experimental error as the other

The results of iteration with the experimental base differed only very little from
those obtained with the freely iterated base, and are therefore given only for the
polydispersity index 2 and the maximum of the function tw(r) at © = 1 000. The
course of the residuals in the iteration at a fixed maximum of the function tw(t)
and at a polydispersity index up to 2 is very similar, the main difference being the
scale and the sign according to the sign at s’ + 1. This course can be seen in Fig. 1
for s’ = 2, polydispersity index 2 (at a = 1/2) and free iteration of the base.

DISCUSSION

Values in Table I show that the method underestimates the polydispersity index
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TABLE I
(Continued)
a= 06
s = 0(LN) s=—12 s= —18

P, P, SSQ P, P, SSQ P, P, SSQ
1-068 1-066 0-0785  1-070 1-072 0-104 1-031 1-032 0-0171
1-135 1127 1-02 1-139 1-149 1-76 1-063 1-067 0-304
1-200 1-182 4-26 1-209 1-230 9-24 1-095 1-104 1-69
1-263 1-234 11-2 1-279 1-316 29-9 1-128 1-144 578
1-325 1-282 23-0 1-349 1-407 735 1-161 1-186 151
1-386 1-326 40-4 1-419 1-501 151 1-194 1-231 331
1-446 1-368 64-1 1-489 1-600 275 1-228 1-278 64-2
1-504 1-407 94-1 1-560 1-703 456 1-262 1-328 113
1-562 1-444 131 1-630 1-809 701 1-296 1-380 187
1-618 1-479 174 1-700 1-919 1020 1-330 1-434 289
1-618°  1-499 138 1-700°  1-851 280 1-330° 1406 108
1-618°  1-498 153 1-700®°  1-858 512 1-330° 1408 149
1-890 14631 480 2:053 2507 31720 1-505 1-737 1430
1-890°  1-665 377 2:053°  2:340 . 700 1-505°  1-660 364
2145 1-752 911 2406 3138 7920 1-683 2-080 3930
2:145°  1-803 709 2:406°  2-841 1140 1-683%  1-930 727
2619 1-940 2010 3-113 4463 17 600 2-043 2-845 12 800
2:619°  2-022 1560 3-113%  3-845 1 840 2:043%  2-488 1 480
3-058 2-083 3290 3-820 5-813 25 000 2-406 3-660 24 500
3-058%°  2-194 2530 3-820°  4-828 2240 2:406°  3-045 2050

experimental points instead of the standard free iteration of the base.

values for s > —a (i.e. for SZ and LN MWD) while overestimating those for
s < —a (P¥MWD). For a polydispersity index up to 1-2 the method gives a good
estimate with an error below 0-1; at a fixed s value the error is only little dependent
on a. For the polydispersity indices above this value up to 1-5 the method still gives
a very rough estimate of the polydispersity index (e.g. the real polydispersity index 2
in the case of SZ MWD is distorted to c. 1-45), while above this value the method is
virtually not applicable at all without some additional steps. If, however, we know
the MWD type (SZ, LN, PV, or s in the case of GEX), or if we assume some MWD
type, then by using Table I we can correct the calculated polydispersity index values,
thus extending applicability of the method.
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If the sum of the squares of the residuals (shown multiplied by 10® as SSQ in
Table I) is lower than the square of the noise level (i. e. than the average square of the
experimental error) in the correlation function gi(t), then by using this correlation
function it is not possible to distinguish the simulated (real) distribution from the
assumed one. At the usual noise level about 10™3 this means that at the polydis-
persity index up to c¢. 2 QELS cannot be used to determine the MWD type. The
worst situation’ arises at a = 1/3,- because in this case the relaxation times distribu-
tion at the same MWD is narrowest. From SSQ values in Table I we can see that
in order to determine the polydispersity index from the QELS experiment with sensible
accuracy, we ‘would have to reach a noise level in: the correlation function of about
10~*, which can be achieved only by a very long measurement using the best correla-
tors. )
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